W7_TH_ Standardized WBS Structures for Gas Station Project-Part 4

1. Problem Definition

Gas Station (GS) project is a construction project of gas pipeline treatment facility to compressed natural gas (CNG). CNG is used as motor vehicle fuel. Types of motor vehicles that currently dominate the use of CNG are public transportation such as bus, bajaj and taxi.

Fig 1. GS Project Lay Out

A GS area consists of several areas: commercial area, administrative area, main equipment area and utility equipment area. In this project each area is supported by some equipment or facilities

Commercial area is the area used for costumer consists of waiting room area, food court area, ATM area and minimarket area. The administrative area consists of gas station office space, workplace, worship room and toilet. The main equipment area generally contains equipment such as scrubbers, dryers, compressors, CNG storage and dispensers. While the utility equipment area consists of POS (point of sales), FACP (fire alarm control panel), CCTV (closed circuit television), ESDV, air instrument and panel room.

In the project, Engineering team is divided into several disciplines such as mechanical engineer, process engineer, civil engineer, instrumentation engineer, electrical engineer and pipeline-pipeline engineer.
Each engineer has the task in accordance with his expertise to oversee the project from the initial phase, design, construction, commissioning and subsequently submitted to the operations team

After compare 15 Omniclass Tables that applicable and relevant for GS Project WBS, in this week Author will build Standardized GS WBS from top three OmniClass Tables which are:

  1. Table 13-Spaces by Function
  2. Table 23-Products
  3. Table 31-Phases
2. Develop the Feasible Alternative
  • Table 13-Spaces by Function

Spaces by Function are basic units of the built environment delineated by physical or abstract boundaries and characterized by their function or primary use. Spaces have a purpose or use.  This is their function and the concern of this table.  Spaces can be occupied by people, things, and substances and serve as mediums for activities and movement.

  • Table 23-Products

Products are components or assemblies of components intended for permanent incorporation into construction entities. A product may be a single manufactured item, a manufactured assembly consisting of many parts, or a manufactured operational stand-alone system.

  • Table 31-Phases

A phase is a period of time in the duration of a construction project identified by the overall character of the construction processes which occur within it. This table provides the time and activity dimension for the process of creating and sustaining the built environment.  A “project” can be defined as a planned undertaking consisting of a process or set of procedures to accomplish a task.  Phases are portions of time and activity efforts within any project that provide necessary groupings of activities, and resultant milestones and expectations.

 3. Develop of the Outcome for Alternative

Moine (2013) has developed a 3D WBS model. All of this three dimension projects can be integrated in comprehensive 3D models which visualized as Figure 2 below[2]:

Figure 2. Project Cubes Concept of 3D WBS Model[2]

Author will combine Table 13-Spaces by Function as Zone Breakdown Structure (ZBS), Table 23-Products as Product Breakdown Structure (PBS) and Table 31-Phases as Activity Breakdown Structure (ABS) to become Standardized GS 3D WBS.

4. Selection Criteria

The criteria for choose OmniClass Number and combine to 3D WBS are:

  1. The WBS should represent zone, activity or phase for GS Project
  2. Deliverables should be decomposed to the level of detail needed to estimate the effort required to obtain them
  3. Ensure That each WBS element has a single point of accountability
  4. Support historical cost collection for future cost estimating purposes
5. Analysis & Comparison of Alternative
  • Table 13-Spaces by Function – Zone Breakdown Structure (ZBS).

Detail ZBS for GS projects can be extracted by OmniClass Table 13 (Space by Function) which noted spaces for decompose ZBS components, which detail shown:

Chart 1. GS OmniClass ZBS

Figure 3. GS Space by Function

  • Table 23-Products – Product Breakdown Structure (PBS).

Detail PBS for GS project can be extracted by OmniClass Table 23 (Product) which noted GS facilities for decomposes PBS components, which detail shown:

Chart 2. GS OmniClass PBS

Figure 4. GS Facilities

  • Table 31 – Activity Breakdown Structure (ABS).

Detail ABS for GS project can be extracted by OmniClass Table 31 (Phases) which noted project phase for decompose ABS components, which detail shown:

Chart 3. GS OmniClass ABS

6. Selection of the Preferred Alternatives

Three Tables are combine together to form dimensional cube where OmniClass PBS as x-axis, OmniClass ABS as y-axis and OmniClass ZBS as z-axis, which shown at 3D WBS below.

Figure 5. GS OmniClass 3D WBS

7. Performance Monitoring and The Post Evaluation Result

Standardized GS WBS can build from combining top three OmniClass Tables. It is necessary to keep update the WBS periodically during project phase. Project management team also needs to evaluate the impact during phases of the project so the project can smoothly deliver with on time, on budget and on scope.

References:

  1. Planning Planet (2017). Creating Work Breakdown Structure. Retrieved from http://www.planningplanet.com/guild/gpccar/creating-work-breakdown-structure
  2. Ardi, Satria. (2014). W14_SAS_Developing|Soroako AACE 2014. Retrieved from https://soroakoaace2014.wordpress.com/2014/12/12/w14_sas_developing-standardize-omniclass-3d-wbs-for-electric-furnace-rebuild-project/
  3. OmniClass (2017), OmniClass Table 21 – Elements (includes design elements). Retrieved from www.omniclass.org/tables/OmniClass_21_2012-05-16.zip
  4. Norsok Standard Z-014 (2017), Norsok Standard Z-014. Retrieved from http://www.standard.no/pagefiles/951/z-014.pdf
  5. Ardi, Satria. (2014). W12_SAS_Developing|Soroako AACE 2014. Retrieved from https://soroakoaace2014.wordpress.com/2014/11/28/w12_sas_developing-3d-wbs-for-electric-furnace-rebuild-project/
  6. El Rashid, M. (2016). The Influence of Non-Standard Work Breakdown Structure on Change Orders and Cost Estimation for Sudan Oil and Gas Projects, PM Word Journal Vol. V. Retrieved from http://pmworldlibrary.net/wp-content/uploads/2016/12/pmwj53-Dec2016-ElRashid-non-standard-work-breakdown-structure-sudan-featured-paper.pdf
  7. Gannasonggo, Gustaf. (2012). W3_GGS_OmniClass WBS|Casablanca AACE 2012. Retrieved from https://aacecasablanca.wordpress.com/2012/02/06/w3_ggs_omniclass-wbs-table-selection-using-additive-weighting-technique/
  8. Fahmi, Ahmad. (2014). W6_AFS-Managing Small Project |Simatupang AACE 2014. Retrieved from https://simatupangaace2014.wordpress.com/2013/10/08/w6_afs_-managing-small-project-omniclass-3d-wbs-2/comment-page-1/
 

1 thought on “W7_TH_ Standardized WBS Structures for Gas Station Project-Part 4”

  1. AWESOME Pak Tommy!!! Nice work……. NOW you have made a strong case as to why the ZBS X ABS X PBS model is justified for use by you for your stakeholders. Just keep in mind that this is not the ONLY combination or permutation that is possible and that for other stakeholders, this approach MAY not work.

    But for this particular application, you have made a compelling and convincing argument as to why this particular 3D model is appropriate.

    Keep up the good work but you need to get moving on your PAPER…..

    BR,
    Dr. PDG, Jakarta

     

Leave a Reply

Your email address will not be published. Required fields are marked *